Thursday, 17 December 2015

Latar Belakang Osmoregulasi Pada Ikan

I. PENDAHULUAN
A. LATAR BELAKANG
            Fisiologi adalah suatu ilmu yang mempelajari segala proses yang berlangsung dalam tubuh makhluk hidup, baik organisme bersel tunggal maupun bersel banyak, termasuk interaksi antar sel, jaringan, organ serta semua komunikasi intercellular, baik energetik maupun metabolik. Fisiologi ikan mencakup proses osmoregulasi, sistem sirkulasi, sistem respirasi, bioenergetik dan metabolisme, pencernaan, organ-organ sensor, sistem saraf, sistem endokrin dan reproduksi (Fujaya, Y,2001).
            Osmoregulasi adalah proses mengatur konsentrasi cairan dan menyeimbangkan pemasukan serta pengeluaran cairan tubuh oleh sel atau organisme hidup. Proses osmoregulasi diperlukan karena adanya perbedaan konsentrasi cairan tubuh dengan lingkungan disekitarnya. Jika sebuah sel menerima terlalu banyak air maka ia akan meletus, begitu pula sebaliknya, jika terlalu sedikit air, maka sel akan mengerut dan mati (susilo,2010).
            Proses inti dalam osmoregulasi yaitu osmosis atau pergerakan air dari cairan yang mempunyai kandungan air lebih tinggi menuju ke yang lebih rendah. Berdasarkan konsentrasi osmotik, suatu cairan dapat dibedakan menjadi hipoosmotik, isoosmotik, dan hiperosmotik. Hipoosmotik adalah cairan yang konsentrasi osmotiknya lebih rendah dibandingkan lingkungannya. Isoosmotik adalah cairan yang konsentrasi osmotiknya sama dengan lingkungannya. Hiperoosmotik adalah cairan yang konsentrasi osmotiknya lebih tinggi dibandingkan lingkungannya (Susilo,2010).
            Oleh sebab itu, pentingnya osmoregulasi karena pada tubuh ikan bersifat permeabel terhadap lingkungan maupun lautan garam. Sifat fisik lingkungan yang berbeda akan menyebabkan adanya perbedaan proses osmoregulasi antara ikan air tawar dengan ikan air laut.

Wednesday, 16 December 2015

Histologi pada ikan

Anesthetic Agents


Ms 222 / Tricaine (chemical's full name is tricaine methanesulfonate)

(Other generic names are 3 aminobenzoic acid ethyl ester; ethyl m-aminobenzoate; tricaine).      Paling banyak digunakan didunia.
Dosis : 50 – 100 mg/L
Karena pHnya rendah dapat di netralkan dengan 5-6 mL 10% saturated NaHCO3 / L 100 mg/L larutan MS222.

Benzocaine (Chemical name: Ethyl-p-aminobenzoate).
Secara kimiawi mirip dengan MS222.  Tidak larut dalam air, tetapi ethanol (1g/L 96% ethanol, dalam dark bottle).  Neutral solution.
Dosis : 2.5 mL stock solution / 10 L aerated water within 2-5 min. immobilzed fish and recovery time 5 – 15 min.

Chlorbutanol- Chlorbutol- Chorethone- Acetochloroform
Tidak banyak digunakan.  Menyebabkan iritasi pada kulit, mata dan large quantity may cause unconsciousness.
Larut dalam ethanol (30 g in 100 mL 96% ethanol)
Dosis : 10 mL base solution in 10 L water.

Methomidate chloride
Less depression of respiration than MS222 dan benzocaine. 
Konsentrasi 5 mg/L.    Larut dalam air
Sudah dicoba dengan hasil pada berbagai species.

Quinaldine
Tidak mudah larut dalam air.  Bahaya bagi kulit, tetapi Quinaldin-sulphate lebih aman.
Merupakan larutan pH rendah, buffered with Sodium bicarbonate.
Jarang digunakan.

Propanidide
Larutan 5% dapat larut dalam air.  Untuk anestesi waktu singkat dan lama.  Tidak mempengaruhi laju respirasi dan sirkulasi darah.

Clove oil  (Chemical name: eugenol (4-allyl-2-methoxy-phenol).
Dikenal sebagai bahan yang aman untuk anestesi.
Tidak mempengaruhi kemampuan renang ikan.
Konsentrasi : 20 – 40 mg/L (anestesi ringan) atau 100 – 120 mg/L (strong anestesi)

FIXATIVES


1.  Neutral Formalin 10%

Formalin 37% or 40% 1 mL + Aquades 9 mL.  Tambahkan 3 mL borax / L 10% formalin.


2.  Bouin’s solution

Picric acid : C6H3N3O7 : 15 mL (larutan jenuh picric acid dalam aquades)

Formalin : HCHO 40%          : 5 mL

Acetic acid (pure): CH3COOH       : 1 mL


3.  10%Formalin - TBS :

- Tris (hydroxymethyl) aminomethane : NH2C (CH2OH)3: 1.21 g 
- NaCl : 8.775 g
diluted into 600 ml DW and stir.

Adjust the pH to 7.5 by adding HCl while stiring, then add up to 1 L by adding formalin (37%).  To get neutral pH, use buffered formalin.

Mix pure formalin (37%) : TBS = 1 : 9 to make 1 L solution. 

4.  ALCOHOL

It is used to fix and preserve fish specimens, especially if skeletal structures such as otoliths are to be examined.  Alcohol is an excellent preservative but is not recommended for fixation of soft tissues.









SUBJECT: Anesthetizing fish with MS222
DATE: 4/96

Has anyone used MS222 (3-aminobenzoic acid ethyl ester) to anesthetize fish?
I recall using a weak solution for a physio lab as a grad student, but I
cannot remember (or find) a concentration. Also, any special tips on
getting it into solution?

Thanks very much-

Kate Toner
toner@bucknell.edu


Kate - I have used MS222 in a 20% solution to anesthetize worms. It 
does go into solution, but very slowly (in water) with a lot of 
stirring. I found that it looses potency quickly - I could not use 
the same container two consecutive days. We eventually stopped using 
MS222, moving to glycerol (I think - it has been a long time). Hope 
that helps!
Kate Flickinger
ISU 
Lab Coordinator - Zoology and Genetics


I don't know what formal conc. to use but some years ago I peppered 
ms222 on the surface of a small amount of water to anesthetize Xenopus, 
stirred gently, waited, and if still active, repeated the protocol until 
the tadpoles were inactive, studied them, then after a few minutes 
transferred them to water without ms222.
Hope this helps until a more precise answer is available.

cheers

rrs@bradley.bradley.edu
Robert Rhea Stephens
Biology Department
Bradley University
Peoria, IL 61625



I found the following info in A LABORATORY COMPANION FOR GENERAL AND
COMPARATIVE PHYSIOLOGY, 2nd ed, by Hoar and Hickman:

"There is a very wide latitude in the permissible dosage and recommended
amounts vary from 1:5,000 to 1:20,000. In practice, a solution of about
1:10,000 is usually found satisfactory; animals are placed in the solution
until the desired level of narcosis is attained and then removed to their
natural water for injection or operation. The sustaining dose for prolonged
anesthesia (added to the water flowing over the gills) should be much more
dilute (1:45,000). Solutions of MS-222 gradually lose their activity but a
10% solution will remain fully active if stored in a brown bottle for up to
three days. Solutions in sea water will become toxic if exposed to light."

Hope this helps. Good luck.

George

George Edick
RPI - Dept. Biology
Troy, NY 12180
edickg@rpi.edu 



I leafed through my file on anesthetics and found a methods paper on the
use of MS222 (generally referred to as tricaine methanesulfonate and now
available from Ayerst under the tradename Finquel). It gives all the
information you need:

Ohr, E.A. 1976. Tricaine methanesulfonate--I. pH and its effects on
anesthetic potency. Comp. Biochem. Physiol. 54C:13-17.

The gist: for goldfish start with 0.01% TMS in distilled water. The
spontaneous pH of this solution will be about 3.7. Titrate this solution
with NaOH to a pH of 7-8. Neutralizing the solution induces a quicker,
longer-lasting and less stressful anesthesia. You should titrate only the
final solution, not stocks if you make them up, because the MS222 will tend
to precipitate out. If you intend to anesthetize saltwater fish, note
that the buffering effects of seawater are much greater, resulting in a
spontaneous pH of much closer to neutral when MS222 is added; thus less pH
adjustment will be needed.

Induction time at this concentration should be around 5 minutes for a 2-5 g
goldfish. Once the fish is returned to freshwater, recovery time should be
around 4 minutes.

One last note from me, not the paper: MS222 is carcinogenic, so wear gloves.

Sara Hiebert
Biology Department
Swarthmore College
Swarthmore, PA 19081
610-328-8053


Hello Kate,
We have at our facility an Aquaculture unit and therefore regularly have
to anaesthetise fish. We have stayed away from using MS-222 because of its
carcinogenic nature although it is widely used in industry. We have used
both 2-phenoxyethanol and tertiary amyl alcohol to anaethetise fish:
2-phenoxyethanol has a narrower range of tolerance than tertiary amyl
alcohol so we now use the latter almost exclusively. We use a 1% solution
and find it works beautifully for goldfish, brook trout, charr & salmon.
It can be obtained from any chemical company (e.g. Sigma); the only
downside is that it is becoming somewhat expensive. If you need further
information please contact me at: Y7GX@UNB.CA

Best of Luck!
Evelyn Stillwell

c/o
Biology Department
University of New Brunswick
Fredericton, N.B.
Canada E3B 6E1


A URL for msds sheets is gopher://atlas.chem.utah.edu/11%2FMSDS

Unfortunately, it does not list ms222. What is the chemical's full name?

Sincerely,
Roger Christianson 503-488-0223 (home)
Department of Biology 503-552-6747 (office)
Southern Oregon State College 503-552-6415 (fax)
1250 Siskiyou Boulevard rchristi@wpo.sosc.osshe.edu
Ashland, OR 97520


The chemical's full name is tricaine methanesulfonate.

Sara Hiebert
Biology Department
Swarthmore College
Swarthmore, PA 19081
610-328-8053


MS222 is a brand name. Other generic names are 3 aminobenzoic acid
ethyl ester; ethyl m-aminobenzoate; tricaine.
Ed Gruberg 

7.2 ANAESTHESIA 

7.2.1. Introduction
Rendering fish quiet (sedation) or unconscious (anaesthesia) is crucial to several aspects of fish tagging. Summary sheets at the end of this section are intended to help operators choose and use anaesthetics: they are also readily downloadable as OHP slides. More information about anaesthesia may also be gained by interrogating the WELFARE database. Operators should be aware that there are legislative implications of use of anaesthetics on fish that are to be released to the wild because of the perceived risk of chemical residues reaching humans through the food chain (see section 6.2.4 in legislation section).

7.2.2. Anaesthesia
A variety of handling methods have been applied during the tagging process, ranging from use of blindfolding in calming fish, to full anaesthesia involving continuous irrigation of the gills with fresh or seawater containing diluted anaesthetic agents.
Under anaesthesia, handling stress will be reduced and tagging can be accomplished more rapidly without risk of the fish hurting themselves when trying to escape. Although the use of anaesthetics in some cases may be unwanted due to their detrimental effects on the physiology and behaviour of the fish, considerations of animal welfare will in most cases prohibit tag attachment to unsedated fish if surgery is involved.

7.2.3. Choice of anaesthetics
Different handling procedures demand different anaesthetic approaches. Light anaesthesia (=sedation) is defined as ‘reduced activity and reactions to external stimuli’, and is sufficient for procedures such as transport or weighing of fish. Full anaesthesia can be defined as ‘loss of consciousness and reduced sensing of pain, loss of muscular tonus and reflexes’ and is needed when surgical procedures are applied (MacFarland 1959).
The behavioural changes occurring in fish passing through sedation to full anaesthesia were classified by MacFarland (1959). There are 4 stages with subclasses ranging from normal (stage 0), where the fish reacts to external stimuli and where the muscular tonus and swimming ability is normal, to the stage of total physiological collapse (stage IV), where gill movements have stopped and which in a few minutes will lead to heart failure. In a tagging context, the stages where the fish is in a state of light/deep anaesthesia (stages II and III) are of greatest relevance, as the animal is then insensitive to pain caused by the attachment of transmitters or data storage tags.
Choice of sedatives/anaesthetics must be based on the species to be tagged, the number and size of fish involved, and the duration of the operation in question. Water temperature and chemistry have also to be taken into consideration when choosing the method. Lastly, the work often has to be done under primitive field conditions without accurate control of concentrations and exposure times. An anaesthetic with a good safety margin between effective anaesthesia and irrevocable collapse is essential in such circumstances.

7.2.4. Categories of methods

(a) Physical sedation methods
Physical sedation can be obtained by rapid lowering of temperature or by electric shock. The former method is mainly applicable for transportation (c.f. Ho & Vanstone, 1961). Coldwater adapted species, and marine fish require lower temperatures for sedation than warm water species and freshwater fish (Chung 1980). Water cooling can also be used in conjunction with other anaesthetics (e.g. Benzocaine) but the dosage must then be reduced by about 30% (cf. Ross and Ross 1983). Electroanaesthesia has a number of advantages such as rapid immobilisation of fish, no need for chemicals, rapid regain of consciousness and low costs (Madden and Houston 1976, Gunstrom and Bethers 1985, Tytler and Hawkins 1981; Cowx & Lamarque, 1990; Cowx, 1990). But these are outweighed by the fact that the method cannot be used in saline water, and the danger of using inappropriate voltage levels, which may give severe physiological stress responses in experimental fish (Shreck et al. 1976) due to hypoxia. There are also significant risks to experimenters, principally from electric shock. In the U.K. the National Rivers (NRA) issued a safety Code of Practice in 1995.

(b) Chemical sedation and anaesthesia
Chemical sedation is distributed to fish in liquid dilutions of varying strengths depending on the agent used. The sedative is inhaled by the fish and diffuses across the gill epithelia. In minor quantities it can also diffuse into the fish via the skin (Fereira et al. 1984) - this may be a particularly significant route in scaleless fish with well-vascularised skins. Since these chemicals are absorbed and excreted predominantly via the gills, fish with a large surface of gill ephithelium for a given body weight (e.g. salmonids) require lower doses of anaesthetics than fish (e.g. eels) with relatively smaller epithelial surfaces (Ross & Ross 1983). Other factors affecting the absorption and excretion of chemicals are the relationship between the surface of the gill epithelium and the body volume, thickness of epithelium, type of anaesthetic, dosage and temperature.
All known anaesthetics have unwanted side effects. Most of them are barbiturates, which lead to unconsciousness, inhibition of the sensing of pain and loss of muscular tonus and reflexes. The most important complication connected with all forms of chemical anaesthesia is hypoxia due to reduced respiration and vascular activity. This leads to physiological changes in the blood (e.g. lowered pH), hypotonia (= reduced blood pressure), raised blood glucose, blood lactate and haematocrit (Tytler & Hawkins 1981). In addition to physiological deterioration of blood parameters, hypoxia can cause brain damage, which interferes with directional orientation (Taylor 1988), or alters temperature preferences (Goddard et al. 1974).
Widely used anaesthetics of the barbiturate group are:
MS 222- Tricaine methane sulphonate
Chemical name: ethyl- amino- benzoatemethanesulphonate. MS 222 is probably the most widely used fish anaesthetic world-wide, and there are numerous studies on the physiological effects of this agent (e.g. review by Bell 1987). It is a crystalline powder easily dissolved in fresh and seawater. The recommended dosage for anaesthesia is 50- 100 mg/ l (Klonz 1964; Fereira et al. 1979). It should be observed that MS222 becomes toxic in seawater exposed to sun (Bell 1987). MS222 gives an acid solution and a dosage of 75 mg l-1 can cause the pH to fall to 4.0 in soft water (Wedemeyer 1970). This effect can, however, be mediated by adding 5- 6 ml saturated (10%) solution of NaHCO3 to 1 litre of 100 mg l-1 solution of MS222.
Benzocaine
Chemical name: Ethyl-p-aminobenzoate. This chemical is also very widely used in fish anaesthesia. It is chemically close to MS- 222, both being derivatives of p- aminobenzoic acid. Benzocaine is a white crystalline powder, which is insoluble in water and has to be dissolved in ethanol in a ‘master solution’ of 1 g l-1 96% alcohol. The master solution should be stored in a dark bottle, and has a life of up to a year. The recommended dosage is 2.5 ml of this master solution to 10 l of aerated water. With this dosage the animals should be immobilised in 2 - 5 min. and the recovery time will be 5 - 15 min. Benzocaine gives a neutral solution (Egidius 1973). The time to obtain anaesthesia was observed to take 1.5 min longer time for trout (Salmo trutta) and 3 min longer for pike (Esox lucius) in 7° C water than at 12 ° C (Dawson & Gilderhus 1979). According to Wedemeyer (1970) a comparison between Benzocaine and MS-222 as anaesthetics for salmonids was slightly in favour of Benzocaine as less metabolic change was observed. More recent studies by Soivio et al. (1977) showed few differences between the two; both caused hyperglycaemia. However, benzocaine caused somewhat lesser hyperglycaemia than MS- 222. With the exception of occasional allergic reactions, health hazards to humans are not normally recorded with the use of benzocaine ( MND 1986).
Chlorbutanol- Chlorbutol- Chorethone- Acetochloroform
Chemical name: Chlorbutanol. Although classified as a safe anaesthetic for fish (Johansson 1978), it has not been widely used outside Scandinavia due to health hazards to humans connected with its use. Inhalation of larger quantities may cause unconsciousness, it can also irritate human skin and eyes. Chlorbutanol (Cb) is a crystalline colourless powder that has to be dissolved in ethanol. The usual base solution is 30 g to 100 ml 96% ethanol, and the dose 10 ml base- solution to 10 litres aerated water. Johansson (1978) states that the time for falling into stupor and wakening is inversely dependent to the water temperature, the higher the temperature the lesser the time needed for sedation. The dosage varies somewhat with the size and species of fish but is considered sufficient when the fish rolls on it side after 3-5 min. Chlorbutanol gives a light anaesthesia, but it is normally sufficient when the fish only needs to be handled for a short time handling, such as in tagging (Johansson 1978, Horsberg and Høy 1989). Chlorbutanol is considered a safe anaesthetic for fish, although a study by Hansen and Jonsson 1988 showed an 87 % reduction in return rates of Atlantic salmon (Salmo salar) smolts anaesthetised before release in comparison with untreated fish. Chlorbutanol has also been tested on Atlantic halibut (Hippoglossus hippoglossus), but with a dosage of 50 ml base solution dissolved in 10 l water. The smallest fish are most rapidly sedated; they also have the shortest recovery time.
Methomidate chloride
Methomidate is a hypnotic (sleeping-agent) and not a barbiturate. It therefore causes less depression of respiration than MS-222 or Benzocaine. This may lead to fewer and less serious side-effects. Methomidate is water-soluble. Mattson & Riple (1989) report an effective concentration of 5 mg l-1. Methomidate was tested on rainbow trout in the early 1980s by Gilderhus & Marking (1987), and showed in these tests to give a relatively long wake-up time and also some mortality after treatment. However, during the late 1980s this anaesthetic has been tested with good results for handling salmonids and other fish in culture, such as cod and halibut at the Department of Aquaculture, Institute of Marine Research, Norway, (Mattson & Riple 1989; Huse, pers. Com.; Furevik, pers. com). From 1992 onwards methomidate has been the only anaesthetic used at the Dept. of Aquaculture (Holme, pers. com.); the only negative feature is the high cost of the product.
Quinaldine
Quinaldine is not easily soluble in water, and is also reported to be irritating to human skin and mucus membranes. Quinaldine-sulphate does not have these negative effects, but gives an acid solution, and must therefore be buffered with sodium bicarbonate (Blasiola 1977). It has been used in acetone solution for the capture of intertidal fish living in rock pools. Reports that it may be carcinogenic currently restrict use.
Propanidide
In a 5% solution this chemical is water-soluble. Propanidide seems to have few physiological side effects, and can be used both for short- and long-duration anaesthesia. The main reported asset of this anaesthetic is that it does not reduce the ventilatory rate of the fish (Ross & Ross 1987). The blood-circulation can also remain unaffected as reported by Veenstra et al. (1987) from studies of S. fontinalis embryos and 7 days old alevins of amargosa pupfish (Cyprinodon nevadensis amargosae). It has also been tested on carp (Jeney et al. 1986) rainbow trout and smolts of Atlantic salmon and sea trout (Siwicki 1984) with good results.
Clove oil
Chemical name: eugenol (4-allyl-2-methoxy-phenol). Recent experiments (Anderson et al. 1997) have shown that clove oil is just as effective an anaesthetic for both juvenile and adult rainbow trout (Onchorhynchus mykiss) as MS-222. Clove oil does not affect swimming performance and it also provides swift induction and recovery from anaesthesia. It is regarded as a GRAS (‘generally recognised as safe’) substance by the US Federal Drugs Administration (FDA) and is suitable for use in field studies where immediate release of the fish into the food chain is required. Anderson et al. (1997) have shown that concentrations of 20-40 and 100-120 mg/l will induce light and heavy anaesthesia, respectively. At a concentration of 120 mg/l induction times are significantly faster than MS-222 for both juveniles and adults. At a concentration of 40 mg/l there is no difference for juveniles but induction times are significantly faster for adults. Recovery times for adult fish are rather longer than MS-222 at the higher concentration but no different at the lower concentration.

Download able information sheets that will assist in the choice of anaesthetics for specific purposes have been prepared; they are displayed in Appendix II (7.10) of this chapter and are also available on the CATAG web site (http://www.hafro.is/catag).

7.3. EFFECTS OF CONVENTIONAL TAGS ON FISH
Consideration of conventional tagging (including procedures such as fin-clipping) will be given here. Generally such tagging procedures are innocuous and there is little or no stress to fish beyond that involved in capture and handling (e.g. chinook salmon, Onchorhynchus tshawytscha, Sharpe et al., 1998; see also Gjerde & Reftstie, 1988, Hansen, 1988). The main problem associated with tags is that of pathological lesions caused by tagging or fin clipping (Roberts et al., 1973a, b, c; Morgan & Roberts, 1976), or indeed any breach of fish skin. Such lesions may be subject to secondary infections and are likely to cause effects on growth rate and reproductive performance. Uncontrolled infections may well be a source of mortality, but it seems probable that this is very rare.
Adipose fin clipping (commonly performed on Pacific salmon) may be detrimental because there is some evidence that these fins are secondary sexual characters, which perform an important function in mate selection.
Most tagging experiments are based on the assumption that the behaviour, growth and survival of tagged fish is similar to that in untagged fish and that data generated from these studies is unaffected by the type of tag used or the tagging procedure implemented. Few studies have been carried out to assess the impact of simple external tags on the behaviour of fish (e.g. Lewis & Muntz, 1984; McFarlane & Beamish, 1990), probably because they are difficult to design and carry out. Furthermore, tag effects are sometimes examined under controlled laboratory experiments, which often provide conditions different from the natural environment.
While many of the internal tags or marks may have minimal or negligible effect on the behaviour of marked fishes (Buckley & Blankenship, 1990), external tags may affect the behaviour of tagged fish. Small individuals may have problems with relatively large tags and the application of the tag may cause problems, such as wounds around the attachment. External tags may effect feeding or evasive behaviour and the fish may therefore be more vulnerable to predation. Especially in demersal fish, tags may become overgrown with algae and/or mussels, becoming heavier and more cumbersome. An external tag that has not been anchored firmly into the muscle may continue to irritate the fish, preventing the wound from healing causing a chronic wound.
Growth of sablefish, Anoplopoma fimbria, was found to be affected by the tag or tagging procedure in a comparison of wild, tagged fish with untagged fish (McFarlane & Beamish, 1990). Thus, extrapolating growth information from tagged fish resulted in altered estimates for mortality and mean age at maturity for this species. On the other hand, no effect on growth was observed in similar studies with Arctic char (Salvelinus alpinus) (Berg & Berg 1990).
Carlin tagging and fin clippings are commonly used in studies on salmon or trout migration, survival or growth. Saunders & Allen (1967) showed negative effects of this tagging method on survival of Atlantic salmon, Salmo salar, implying that mortality estimated from tagged salmon smolts would result in an underestimation of the survival rates to adults. This was confirmed in later studies on the same species by Isaksson & Bergman (1978) and Hansen (1988). The increased mortality was attributed to handling, anaesthesia and marking of fish. Carlin tagging was found to have a higher impact on survival than fin clipping, although the latter was not without impact, probably due to stress from handling and anaesthesia. In a laboratory study on snapper (Pagrus auratus), no effect of dart tags on survival or growth was observed on three length sizes of fish during a one-year period (Quartararo & Kearney 1996).
All tagging or marking of fish involves treatment, which disturbs the fish and may stress or harm the fish. Careful handling procedures throughout the capture and marking process are of highest importance. Physiological research has shown fish to be stressed for a prolonged period after handling; for example, levels of lactic acid may be elevated for more than 24 hours after stressing the fish at certain temperatures (Wendt 1965, 1967; Wendt & Saunders, 1973). Histopathological studies on the effects of Disc-dangler tags on Atlantic salmon (Morgan & Roberts, 1976) revealed that external tags of these types can leave severe traumatic wounds which may lead to secondary infection. Similar observations were made by Vogelbein & Overstreet (1987), who reported histopathological problems with internal anchor tags used on spot, Leiostomus xanthurus. The incomplete healing of the integument during the life of the fish may affect the normal behaviour of the fish and result in biased estimates of biological parameters.

A possible (and virtually unstudied) effect of all types of external tagging (whether conventional or with electronic tags) is that tags may become fouled, causing enhanced drag, so disadvantaging the fish. Anecdotal evidence has been collected during CATAG of the existence of such fouling (e.g. by barnacles and seaweed) but more investigation is needed. In particular, it would be desirable if systematic fouling trials could be conducted on tags and tag materials - it is quite possible that fouling could be a source of unremarked mortality of tagged fish.

SEX REVERSAL PADA IKAN GUPPY (Poecilia reticulata) DENGAN HORMON SINTETIS 17-α Methyltestosteron

I.      PENDAHULUAN
Latar Belakang
Genetika adalah ilmu yang membahas transmisi informasi biologis dan penggunaannya dalam perkembangan dan fungsi organisme. Dengan berkembangnya genetika, kini perbaikan genetik ikan telah dilakukan untuk meningkatkan produksi dengan mengembangkan tipe ikan yang sesuai dengan pengelolaan spesifik, kondisi lingkungan, dan kondisi ekonomi setempat. Beberapa teknik yang telah berkembang, antara lain seleksi, kawin silang, manipulasi kromosom melalui genogenesis, androgenesis dan triploididasi, pengarahan kelamin (sex reversal) (Fujaya, 2005).
Sex reversal merupakan satu teknik yang dapat dilakukan untuk memperoleh keturunan monoseks, yang dalam hal ini adalah ikan jantan. Pengubahan jenis kelamin melalui pemberian hormon 17-methyl-testosteron (MT) dapat dilakukan dengan beberapa cara diantaranya dengan penyuntikan, perendaman atau secara oral (melalui makanan). Pemberian hormon dilakukan sebelum ikan mengalami diferensiasi kelamin, yang biasanya mulai terjadi saat telur akan menetas, setelah telur menetas dan sebelum atau sesudah ikan mulai makan (Arfah dkk, 2002).
Ikan guppy (Poecilia reticulata) merupakan salah satu jenis ikan hias yang
hidup di air tawar. Ikan guppy jantan memiliki nilai ekonomis yang tinggi dan banyak diminati masyarakat karena memiliki variasi warna yang menarik dengan corak sirip yang beragam dibagian ekornya. Salah satu cara untuk meningkatkan produksi ikan jantan adalah melalui pengarahan kelamin (Priyono, 2013).
Berdasarkan uraian diatas, diketahui penerapan sex reversal untuk menghasilkan dan meningkatkan populasiikan guppy jantan antara lain dengan teknik sex reversal melalui pemberian hormon 17α-methyltestosteron.
Tujuan Praktikum
Tujuan praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone adalah untuk mengetahui keberhasilan penerapan teknik sex reversal pada ikan guppy (Poecilia reticulata) melalui pemberian hormon 17α-methyl testosteron.
Kegunaan Praktikum
Kegunaan praktikum adalah agar mahasiswa dapat mengetahui teknik atau cara melakukan sex reversal pada ikan guppy (Poecillia reticulata) sehingga mampu diterapkan dilapangan.



II.    TINJAUAN PUSTAKA
Gambar 1.Ikan Guppy (Poecilia reticulata) (Nixon dan Sitanggang, 2004).
Klasifikasi Ikan Guppy (Poecilia reticulata)
Klasifikasi ikan guppy menurut Nelson (1984)dalam Utomo (2008) adalah sebagai berikut:
Filum               : Chordata
Subfilum          : Vertebrata
Kelas               : Pisces
Subkelas         :Teleostei
Ordo                : Cyprinodonoidi
Subordo          : Poecilioidei
Family                         : Poecilidae
Genus                         : Poecilia
Spesies           :Poecilia reticulata
Morfologi Ikan Guppy (Poecilia reticulata)
Ikan guppy berasal dari daerah Amerika Selatan, tepatnya di daerah Amazon. Ikan guppy merupakan salah satu jenis ikan air tawar yang memiliki penampilan morfologis cukup menarik dan toleransi yang tinggi terhadap kondisi perairan yang kurang baik. Selain hidup di perairan tawar, ikan guppy juga mampu beradaptasi di perairan payau serta pada kisaran suhu antara 25-28ºC dengan pH sekitar ± 7,0. Ikan gapi bersifat omnivora dan memiliki panjang tubuh sekitar 5-6 cm (Utomo, 2008).
Siklus Hidup Ikan Guppy (Poecilia reticulata)
Siklus hidup guppy melewati berbagai tahap yaitu larva, juvenil, dewasa dan masa pertumbuhan maksimum. Ikan guppy dapat memiliki pertumbuhan yang optimum di daerah yang mempunyai pencahayaan yang cukup baik, selain berpangaruh juga terhadap keaktifan dan kecemerlangan warna tubuh. perbedaan antara ikan guppy jantan dan ikan betina telihat dari ciri-ciri morfologisnya. Ikan guppy jantan memiliki ukuran tubuh yang lebih kecil dibandingkan ikan betina, ikan guppy jantan memiliki ekor lebih lebar dan warna ekor yang lebih cemerlang dibandingkan betina, dapat menghasilkan sampai ratusan ekor. Pada ikan guppy jantan, sirip anal mengalami modifikasi menjadi gonopodium. Ikan guppy pada habitat alami untuk ikan betina dapat mencapai ukuran maksimal 7cm, lebih panjang dari jantan yang panjangnya kurang dari 4cm (Utomo, 2008).
ReproduksiIkan Guppy (Poecilia reticulata)
Ikan guppy merupakan ikan yang bersifat ovovivipar yaitu ikan yang bertelur dan melahirkan. Selama di dalam perut induknya, embrio mendapat makanan bukan langsung dari induknya melainkan dari kuning telur. Ikan guppy memiliki gonad yang cepat berkembang yaitu 3 minggu setelah larva lahir gonopodium pada jantan telah berkembang, karena itu ikan guppy dikenal sebagai ikan yang berkembang biak cepat. Dalam satu kali perkawinan, seekor ikan guppy melahirkan secara parsial sampai 3 kali dengan interval waktu 1 bulan. Pada saat fertilisasi , sperma yang masuk dalam tubuh induk betina dapat bertahan hingga 6 bulan, sehingga dalam waktu 6 bulan tersebut ikan dapat melahirkan walaupun tidak terjadi perkawinan kembali. Ikan guppy dapat menghasilkan anak dengan rata-rata terendah 30-80 ekor, namun ada juga yang dapat menghasilkan sampai ratusan ekor (Utomo, 2008).
Genetika
Genetika adalah ilmu tentang keturunan (Gusrina, 2014). Genetika merupakan salah satu ilmu dasar yang penting untuk menjelaskan berbagai pola pewarisan gen dalam populasi, genetik fenotip kualitatif dan kuantitatif yang mengekspresikan sifat unggul dan landasan teori dasar dari program seleksi ataupun program persilangan antara spesies atau famili (Buwono, 2015).
Genetika menjelaskan tentang material pembawa informasi untuk diwariskan (bahan genetik), bagaimana informasi itu diekspresikan (ekspresi genetik), dan bagaimana informasi itu dipindahkan dari satu individu ke individu yang lain (pewarisan genetik). Pemuliaan ikan merupakan kegiatan untuk menghasilkan ikan unggul melalui perbaikan sifat yang terukur. Pemuliaan dapat dilakukan melalui cara seleksi. Prinsip dasar dari seleksi adalah mengeksploitasi sifat aditif  dari allela-allela pada semua lokus yang mengontrol sifat terukur untuk memperbaiki suatu strain ikan  (Nihaz, 2011).
Sex Reversal
Jenis kelamin suatu individu ditentukan oleh faktor genetis dan lingkungan. Secara genetis, jenis kelamin pada zigot merupakan hasil dari keseimbangan gen penentu jantan dan betina di dalam kromosom kelamin, serta
sebagian kecil gen yang berada di dalam autosom. Perubahan jenis kelamin dapat terjadi apabila keseimbangan gen penentu jantan dan betina didalam autosom berubah. Fungsi mekanisme genetik pada sistem endokrin embrional mengarahkan differensiasi gonad yang menentukan jenis kelamin embrio. Perubahan jenis kelamin secara alami yang disebabkan oleh faktor lingkungan tidak merubah susunan genetis. Tetapi hanya merubah ikan jantan secara genetik menjadi ikan betina secara fenotipe atau sebaliknya. Proses differensiasi merupakan proses perkembangan gonad ikan menjadi jaringan yang definitif. Proses ini terdiri dari serangkaian kejadian yang memungkinkan sex genotipe terekspresi menjadi sex fenotipe (Utomo, 2008).
Hormon
Hormon androgen adalah hormon steroid yang berfungsi memacu pertumbuhandan pembentukan sifat kelamin jantan. Salah satu jenis hormon steroid ini yaitu 17α-methyltestosteron. Hormon ini merupakan hormon sintetik yang molekulnya sudah diubah. Pada atom karbon ke-17 diinduksikan gugus metil supaya tahan lebih lama bereaksi di dalam tubuh.Penggunaan androgen alami seperti testosterone tidak memberikan hasil yang memuaskan. Hormon androgen sintetis memiliki efektivitas yang lebih tinggi dibandingkan dengan yang
alami. Ada beberapa cara yang dapat dilakukan dalam pemberian hormon steroid yaitu melarutkan hormon ke dalam air media pemeliharaan, memasukkan kedalam makanan, dan penyuntikan (Muslim, 2010).



III.   METODE PRAKTIKUM
Waktu dan Tempat
Praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone dilaksanakan pada hari Minggu, tanggal 11 Oktober – 19 November 2015, pukul 10.00 WITA, bertempat di Hatchery, Jurusan Perikanan, Fakultas Ilmu Kelautan dan Perikanan, Universitas Hasanuddin, Makassar. 
Alat dan Bahan
Alat dan bahan yang digunakan pada praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone dapat dilihat pada tabel berikut:
Tabel 1. Alat yang digunakan pada praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone, yaitu:
No.
Alat
Fungsi
1.
Akuarium
Wadah pemeliharaan
2.
Pipet Tetes
Memindahkan larutan
3.
Tabung Reaksi
Menyimpan larutan hormone
4.
Toples
Wadah penyimpanan air rendaman
5.
Timbangan
Menimbang bubuk hormone
6.
Selang
Menyipon air pemeliharaan
7.
Aerator
Menyuplai oksigen bagi ikan

Tabel 2. Bahan yang digunakan pada praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone, yaitu:
No.
Bahan
Fungsi
1.
Ikan Guppy  (Poecilia reticulata)
Sampel dalam praktikum
2.
Hormon 17α-metiltestosteron
Bahan pengarahan kelamin jantan
3.
Alkohol
Melarutkan hormone
4.
Pakan Pellet Bubuk
Sumber nutrisi bagi ikan


Prosedur Kerja
Prosedur kerja yang dilakukan pada praktikum Sex Reversal pada ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone adalah sebagai berikut:
1.    Membersihkan wadah akuarium dengan air, lalu diisi air bersih yang telah diendapkan setinggi 20 cm, beri aerator sebagai penghasil oksigen pada akuarium.
2.    Masukkan induk Ikan Guppy (Poecilia reticulata) yang telah matang gonad sebanyak 7 ekor dengan perbandingan jantan : betina = 4 : 3 ke dalam masing-masing akuarium, proses pemijahan berlangsung selama 3-4 hari. Selama pemijahan induk diberi pakan pellet sebanyak 2 kali sehari.
3.    Setelah pemijahan selesai, induk jantan diangkat untuk mencegah perkawinan liar.
4.    Menyiapkan toples sebagai wadah perendaman induk betina dalam larutan hormon. Pembuatan larutan hormon dilakukan dengan cara menimbang hormon dengan dosis 4 ppm (4 mg/L), kemudian larutkan hormon dengan alcohol sebanyak 1 mL dalam tabung reaksi, lalu memasukkan larutan ke dalam toples yang telah berisi air sebanyak 1 L, beri aerasi agar bau alkohol menguap dan tidak membahayakan ikan yang direndam, didiamkan selama 30-45 menit.
5.    Memasukkan ikan betina yang telah bunting ke dalam toples yang berisi larutan hormon, beri aerasi dan didiamkan selama 24 jam agar hormon meresap ke dalam tubuh ikan.
6.    Setelah 24 jam induk betina dikembalikan kembali ke dalam akuarium pemeliharaan, tunggu beberapa hari hingga induk betina melahirkan anaknya.
7.    Pemeliharaan burayak ikan Guppy dilakukan selama 1 bulan atau hingga dapat di identifikasi jenis kelaminnya, selama pemeliharaan dilakukan penyiphonan kotoran dan pemberian pakan berupa pellet tepung sebanyak 2 kali sehari.
8.    Mengidentifikasi larva ikan Guppy dilakukan dengan cara melihat ciri fisologis, untuk jantan ditandai dengan adanya organ gonopodium pada daerah anus, warna yang lebih terang, dan ekor yang lebih panjang, untuk betina sendiri memiliki warna pudar dan ekor yang pendek.
IV.  HASIL DAN PEMBAHASAN
Hasil
Hasil yang diperoleh dari praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulate) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone dapat dilihat pada tabel berikut:
Tabel 3. Hasil praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone
Kelompok
Jantan
Betina
% Jantan
1
17
15
53.12
2
7
3
70
3
0
0
0
4
13
10
56.52
5
13
6
68.42
6
8
1
88.89
7
8
4
66.67

Grafik 1. Hasil praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone
Pembahasan
Hasil yang diperoleh dari praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone bahwa pada akuarium 1 (kontrol) terdapat ikan jantan sebanyak 53.12%, akuarium 2  terdapat ikan jantan sebanyak 70%, akuarium 3 tidak terdapak anakan, akuarium 4 terdapat ikan jantan sebanyak 56.52%, akuarium 5 terdapat ikan jantan sebanyak 68.42%, akuarium 6 terdapat ikan jantan sebanyak 88.89%, dan akuarium 7 terdapat ikan jantan sebanyak 66.67%.
            Perendaman 24 jam menghasilkan 100% jantan. Demikian pula dengan melipat duakan lama waktu perendaman menjadi 48 jam diperoleh persentase jantan yang juga 100%. Fakta ini menunjukkan bahwa pada dosis 2 mg/1, perendaman selama 24 jam dan 48 jam efektif untuk perubahan kelamin dari betina menjadi jantan, sehingga menghasilkan keturunan yang 100 % jantan. Anna dkk,(1995) dalam Zairin (2002), mendapatkan bahwa dengan tingkat dosis hormon MT 400 mg/kg pakan dan masa pemberian pakan selama 10 hari, presentase ikan jantan yang diperoleh hanya sebesar 64%. Hasil percobaan yang sekarang dilakukan menunjukkan bahwa pemberian hormon melalui perendaman induk bunting efisien ditinjau dari segi penggunaan hormon, lama waktu pemberian dan kepraktisan pelaksanaannya dibandingkan pemberian secara oral. Terdapat kecenderungan bahwa semakin lama waktu perendaman semakin cepat induk melahirkan anaknya. Diduga bahwa hormon MT ikut memberikan kontribusi terhadap perkembangan embrio ikan guppy sehingga kelahirannya menjadi lebih cepat, sesuai dengan penyataan Shepered dan Bromage (1988) dalam Zairin (2002), bahwa MT dan androgen umumnya memiliki sifat anabolik yang mampu merangsang pertumbuhan. Perbedaan perkembangan gonopodium dan munculnya wama tubuh antara anak ikan guppy jantan hasil perlakuan hormonal dengan kontrol diduga ada kaitannya dengan keberadaan hormon androgen pada ikan. Hormon androgen bertanggung jawab terhadap penampakan karakter dan fungsi kelamin jantan (Donaldson dkk,1979dalam Zairin 2002). Pada ikan guppy kerja hormon androgen yang dihasilkan secara endogenus terhadap penampakan karakter kelamin sekunder terlihat dengan penampakan karakter kelamin sekunder untuk semua perlakuan antara umur 1,5 bulan sampai 2 bulan. lwasaki (1989) dalam Zairin (2002), menyatakan bahwa bila ikan guppy tumbuh normal maka bentuk sirip ekor, wama dan pola warna tubuhnya akan tampak jelas setelah ikan berumur dua bulan. Berdasarkan hal ini maka wajar bila perkembangan gonopodium dan munculnya warna pada anak ikan hasil perlakuan lebih cepat (1,5 bulan) dari pada anak ikan kontrol (2 bulan). Diduga hal ini terjadi karena anak ikan hasil perlakuan telah lebih dahulu mendapatkan masukan hormon secara eksogenus mendahului kondisi normal anak ikan kontrol yang mengandalkan hormon yang diperoleh secara endogenus (Zairindkk, 2002).
Hormon sintetis seperti 17α-methyltestosteron memiliki efektifitas yang lebih tinggi daripada bahan alami karena dapat bereaksi lebih lama pada target sel dan lambat dieliminasi tetapi tidak ramah lingkungan. Pada individu jantan hormon methyltestosteron dapat meningkatkan spermatogenesis. Sedangkan pada individu betina menyebabkan munculnya karakter kelamin sekunder jantan yaitu berupa perpanjangan sirip anal dan menyebabkan degenerasi ovari serta reabsorbsi telur. Dosis dan lama pemberian hormon yang melewati batas dapat menyebabkan gangguan perkembangan gonad dan pembentukan gamet. Bahkan pada pengarahan kelamin jantan, maka testis akan mengecil dan terjadi kemandulan akibat kerusakan sel-sel germinal (Ukhroy, 2008).
Menurut Connell dan Miller (2006), Mekanisme kerja hormon pada metode perendaman (Dipping) secara difusi melalui kulit, insang dan organ pencernaan. Absorbsi komponen–komponen terlarut dalam air yang melalui insang cukup besar. Absorbsi yang melalui saluran pencernaan sedikit, walaupun komponen terlarut dalam air yang masuk melalui saluran pencernaan  biasanya cukup besar, sedangkan yang masuk melalui kulit jumlah dan absorbsinya relatif kecil.
Mekanisme kerja dari 17-α Methyltestosterone yaitu bekerja menghambat pembentukan gonad betina (ovari), tetapi testis makin berkembang sehingga gonad akan terdiferensiasi menjadi testis (Umar dan Hasibuan, 2001).







V.    PENUTUP
Simpulan
Berdasarkan hasil yang telah diperoleh dari praktikum Sex Reversal pada Ikan Guppy (Poecilia reticulata) dengan Menggunakan Hormon Sintesis 17-α Methyl Testoterone maka dapat disimpulkan bahwa persentase ikan jantan tertinggi adalah 88.89% dengan dosis hormon 17α-methyltestosteron sebanyak 5 mg/L, dengan rata-rata hasil persentase jantan yang dihasilkan adalah 57.66%.
Saran
Sebaiknya dalam praktikum pemuliabiakan ikan, lebih diperhatikan kondisi praktikumnya dan sebaiknya kursi diperbanyak agar praktikan lebih nyaman mendengarkan arahan dari asisten





DAFTAR PUSTAKA
Arfah, H., Alimuddin, K., Sumantadinata dan Ekasari, J. 2002. Seks Reversal Pada Ikan Tetra Kongo Stadia Larva. Hal 69. Jurusan Budidaya Perairan. Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor. 74 hal.

Buwono, I.D. 2015. Modul ajar Genetika ikan. 1-3. Fakultas perikanan, Universitas padjajaran. Bandung . 35 hal

Connell, D.W dan Miller, G.J. 2006. Kimia dan Ekotoksikologi Pencemaran. Hal 245 – 257. Penerbit Universitas Indonesia. Jakarta. 520 hal.

Fujaya, Y. 2005. Genetika dan Pengembangbiakan Ikan. Hal 6-7. Fakultas Ilmu Kelautan dan Perikanan. Universitas Hasanuddin. Makassar. 206 hal.

Gusrina. 2014. Genetika dan reproduksi ikan. 4-159. Deppublish. Yogyakarta. 246 Hal.

Muslim. 2010. Peningkatan Persentase Ikan Guppy (Poecilia reticulata) Jantan dengan Perendaman Induk Bunting dalam Larutan Hormon 17α-metiltestosteron Dosis 2 mg/L dengan Lama Perendaman Berbeda. Hal 62. Program Studi Budidaya Perairan. Fakultas Perikanan. Universitas Sriwijaya Indralaya. Sumatera Selatan. 108 hal.

Priyono, E., Muslim, dan Yulisman. 2013. Hal 14.Maskulinisasi Ikan Gapi(Poecilia reticulata) Melalui Perendaman Induk Bunting Dalam Larutan Madu Dengan Lama Perendaman Berbeda. 22 hal.

Nihaz, F. 2011. Genetika dan pemuliaan ikan. 1-8. Modul pengajaran. Fakultas perikanan, Universitas padjajaran. Bandung. 33 hal.

Nixon dan Sitanggang, M. 2004.Guppy Ikan Mungil Berekor Indah. Hal 3. Agromedia Pustaka.Jakarta. 76 hal.

Ukhroy, N., U. 2008. Efektifitas Propolis Terhadap Nisbah Kelamin Ikan Guppy. Hal 21-22. Departemen Budidaya Perairan. Fakultas Perikanan dan Ilmu Kelautan.Institut Pertanian Bogor. 33 hal.

Utomo, B. 2008. Efektivitas Penggunaan Aromatase Inhibitor dan Madu terhadap Nisbah Kelamin Ikan Guppy. Hal 3-4. Program Studi teknologi Manajemen Akuakultur. Fakultas Perikanan dan Ilmu Kelautan.Institut Pertanian Bogor. 32 hal.

Umar, J.M., Hasibuan, A. 2001. Pengalihan jenis kelamin ikan nila gift dengan pemberian hormon testosteron alami. 345-348. Puslitbang  eknologi lsotop dan Radiasi. Batan. Jakarta. 400 hal

Zairin, M. Jr., Yunianti, A., Dewi,R.R.S.P.S. dan Sumantadinata, K. Hal 34. Pengaruh Lama Waktu Pery.Ndaman Induk Di Dalam Larutan Hormon 17α-Metiltestosteron Terhadap Nisbah Kelamin Anak Ikan Gapi, Poecilia reticulata Peters. Jurusan Budidaya Perairan. Fakultas Perikanan dan Ilniu Kelautan. Institut Pertanian Bogor. 35 hal.